An Axisymmetric Finite Volume Formulation for the Solution of Heat Conduction Problems Using Unstructured Meshes
نویسندگان
چکیده
In this work, a finite volume formulation developed for two-dimensional models is extended to deal with axisymmetric models of heat conduction applications. This formulation uses a vertex centered finite volume method and it was implemented using an edge-based data structure. The time and domain discretization using triangular meshes is described in details, including the treatment of boundary conditions, source terms, and domains with multiple materials. The proposed formulation is validated and proves to be effective and flexible through the solution of simple model problems.
منابع مشابه
Pressure-Velocity Coupled Finite Volume Solution of Steady Incompressible Invscid Flow Using Artificial Compressibility Technique
Application of the computer simulation for solving the incompressible flow problems motivates developing efficient and accurate numerical models. The set of Inviscid Incompressible Euler equations can be applied for wide range of engineering applications. For the steady state problems, the equation of continuity can be simultaneously solved with the equations of motion in a coupled manner using...
متن کاملAdaptive Unstructured Grid Generation Scheme for Solution of the Heat Equation
An adaptive unstructured grid generation scheme is introduced to use finite volume (FV) and finite element (FE) formulation to solve the heat equation with singular boundary conditions. Regular grids could not acheive accurate solution to this problem. The grid generation scheme uses an optimal time complexity frontal method for the automatic generation and delaunay triangulation of the grid po...
متن کاملIntroduction to the Slide Modeling Method for the Efficient Solution of Heat Conduction Calculations
Determination of the maximum temperature and its location is the matter of the greatest importance in many technological and scientific engineering applications. In terms of numerical calculations of the heat conduction equation by using uniform mesh increments in space, large computational cost is sometimes countered. However, adaptive grid refinement method could be computationally efficient ...
متن کاملA truly meshless method formulation for analysis of non-Fourier heat conduction in solids
The non-Fourier effect in heat conduction is important in strong thermal environments and thermal shock problems. Generally, commercial FE codes are not available for analysis of non-Fourier heat conduction. In this study, a meshless formulation is presented for the analysis of the non-Fourier heat conduction in the materials. The formulation is based on the symmetric local weak form of the sec...
متن کاملModeling Khowr-e Musa Multi-Branch Estuary Currents due to the Persian Gulf Tides Using NASIR Depth Average Flow Solver
The depth average module of NASIR finite volume solver was applied to study the tide induced currents in Khowr-e-Musa estuary. The model computes water level variation and velocity components in horizontal plane solving depth average continuity and momentum equations considering the hydrostatic pressure distribution. The software takes into account the bed and wall geometric complexities and re...
متن کامل